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Abstract. In a previous paper [1] we performed an analysis of the asymptotic structure of the perturbation
theory series for semileptonic τ lepton decays in the massless limit. We extend our analysis to the Cabibbo
suppressed ∆S = 1 decay modes of the τ lepton. In particular we address the problem of m2

s corrections to
the theoretical formulas. The properties of the asymptotic behavior of the finite order perturbation theory
series for the coefficient functions of the m2

s corrections are studied.

1 Introduction

The accuracy of experimental data for τ lepton decays
makes it feasible now to extract the spectral density of
the Cabibbo suppressed ∆S = 1 decay modes through
detecting strange hadrons and even to pin down the tiny
difference with the Cabibbo favored ∆S = 0 case due to
the non-vanishing strange quark mass [2,3]. One of the
main problems in obtaining precise theoretical formulas
is the strict control over the convergence of the pertur-
bation theory (PT) series and the error due to its trun-
cation [1]. For the non-strange decay channels (Cabibbo
favored) this problem is now an actual problem – the theo-
retical uncertainty has already reached a limiting value ex-
isting due to the asymptotic nature of the PT series. This
value is comparable in magnitude with the experimental
error. For the Cabibbo suppressed modes the experimen-
tal errors are still larger than the theoretical uncertainties.
However, with the accuracy of experimental data perma-
nently improving the limiting theoretical precision within
FOPT is becoming a major problem of theoretical analy-
sis in general and of the extraction of the strange quark
mass ms from m2

s corrections in particular.
From the theoretical point of view one of the central

quantities of interest for the Cabibbo suppressed modes
from theoretical point of view is the correction to hadronic
spectral density arising from the non-vanishing s quark
mass. This makes the description different compared to
the massless (Cabibbo favored or ud) case. The m2

s cor-
rections to the spectral densities have been calculated with
a high degree of accuracy within perturbation theory in
the strong coupling constant (e.g. [4]).

In the present note we determine the ultimate theoret-
ical precision reachable for m2

s corrections within a finite
order perturbation theory analysis. We closely follow [1]

and reach our conclusions in a renormalization scheme in-
variant way.

The basic observable is the normalized τ lepton decay
rate into hadrons written in the standard form

Rτ =
Γ (τ → hν)
Γ (τ → lνν̄)

= NcSEW(|Vud|2(1 + δud) + |Vus|2(1 + δus)). (1)

The leading terms in (1) are the parton model results while
the terms δud and δus represent the effects of the QCD
interaction and (in case of non-vanishing quark masses)
mass effects [5–9]. Vud and Vus are matrix elements of the
weak mixing matrix and SEW describes the electroweak
radiative corrections to the τ decay rate.

In general, hadronic observables in the τ system are
related to the two-point correlator of hadronic currents
with well-established and simple analytic properties – this
makes the comparison of experimental data with theo-
retical calculations very clean. This feature makes τ lep-
ton physics an important area of particle phenomenology
where theory (QCD) can be confronted with experiment
to a level of very high precision.

The correlator (here we concentrate only on the strange
hadronic current, i.e. the term proportional to Vus) has the
form

Πµν(q) = 12π2i
∫

dxeiqx〈Tjµ(x)j†
ν(0)〉

= qµqνΠq(q2) + gµνΠg(q2), (2)

with jµ(x) = ūγµ(1 − γ5)s. Πq(q2) and Πg(q2) are in-
variant scalar functions. We work within QCD with three
light quarks and do not consider corrections due to heavy
quarks (the c quark) that would enter in higher orders of
PT through loop effects [10]. The correlator is normalized
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to unity in the leading parton model approximation with
massless quarks.

The theoretical expression for the QCD part of the de-
cay rate into strange hadrons is given by (with
Nc|Vus|2SEW factored out)

Rτ =
∫ M2

τ

0
2

(
1 − s

M2
τ

)2 (
Rq(s) − 2

M2
τ

Rg(s)
)

ds

M2
τ

, (3)

with Rq(s) and Rg(s) being the absorptive parts of the
structure functions Πq(q2) and Πg(q2). The masses of the
light quarks (u, d) can be neglected. We study m2

s correc-
tions for the Cabibbo suppressed decay modes. The repre-
sentation of the total decay rate in terms of the absorptive
parts of the structure functions Πq(q2) and Πg(q2) is con-
venient from the point of view of their analytic properties
in the complex q2-plane. The physical decomposition of
the correlator (2) reads

Πµν(q) = (qµqν − q2gµν)ΠT (q2) + qµqνΠL(q2), (4)

where the ΠT (q2) part contains only spin 1 contributions
and ΠL(q2) contains only spin 0 contributions. The rela-
tion between the two sets of invariant functions ΠT,L(q2)
and Πq,g(q2) describing the correlator (2) reads

ΠT (q2) =
Πg(q2)
−q2 , ΠL(q2) = Πq(q2) +

Πg(q2)
q2 . (5)

In terms of the physical (definite spin) invariant functions
(3) reads

Rτ =
∫ M2

τ

0
2

(
1 − s

M2
τ

)2

×
((

1 + 2
s

M2
τ

)
RT (s) + RL(s)

)
ds

M2
τ

. (6)

The longitudinal part of the spectral density RL(s) van-
ishes if all quarks are assumed to be massless. On expand-
ing Πq(q2) and Πg(q2) in m2

s/q2 and keeping only the
leading term in this expansion one has

Πq(q2) = Π(q2) + 3
m2

s

q2 Πmq(q2), (7)

Πg(q2) = −q2Π(q2) +
3
2
m2

sΠmg(q2), (8)

where Π(q2) is the invariant function already known from
the mass zero case. The functions Π#(Q2) with Q2 = −q2

are computable in perturbation theory in the deep Eu-
clidean region Q2 → ∞. The results of the PT calculation
read

−Q2 d
dQ2 Π(Q2)

∣∣∣
Q2=µ2

= 1 +
αs

π

+ k1

(αs

π

)2
+ k2

(αs

π

)3

+ k3

(αs

π

)4
+ O(α5

s )

−Q2 d
dQ2 Πmg(Q2)

∣∣∣
Q2=µ2

= 1 +
5
3

αs

π

+ kg1

(αs

π

)2
+ kg2

(αs

π

)3

+ kg3

(αs

π

)4
+ O(α5

s ),

Πmq(Q2)
∣∣∣
Q2=µ2

= 1 +
7
3

αs

π
+ kq1

(αs

π

)2

+ kq2

(αs

π

)3
+ O(α4

s ). (9)

Even though the fourth order MS scheme coefficient k3
and the coefficients kq2, kg3 are not known at present we
retain their contributions since we want to have them at
our disposal as free parameters for later considerations.
The numerical values of the other coefficients in the MS
scheme are given in the appendix: these are needed as
reference numbers for our transformations to other more
appropriate schemes. The running coupling and mass are
renormalized at the scale µ. The light quarks u, d are
taken to be massless. Equation (9) constitutes the com-
plete theoretical information necessary for our fixed order
perturbation theory analysis of m2

s corrections. The corre-
sponding expressions with an explicit Q2 dependence can
be found by inserting the expansion of the running cou-
pling constant,

αs(Q2)
π

=
αs

π
+ β0L

(αs

π

)2
+ (β1L + β2

0L2)
(αs

π

)3

+
(

β2L +
5
2
β1β0L

2 + β3
0L3

) (αs

π

)4

+
(

β3L + 3β0β2L
2 +

3
2
β2

1L2

+
13
3

β2
0β1L

3 + β4
0L4

) (αs

π

)5
+ · · · , (10)

and that of the running mass

ms(Q2)
ms(µ2)

= 1 + Lγ0

(αs

π

)
(11)

+
(

1
2
L2β0γ0 +

1
2
L2γ2

0 + Lγ1

) (αs

π

)2
+ · · ·

Here βi and γi are the appropriate coefficients of the β
and γ functions describing the evolution (running) of the
coupling and mass and

L = ln
(

µ2

Q2

)
. (12)

The coupling constant αs in (10) and (c12) is taken at a
genuine normalization point µ. In the present note we do
not systematically discuss non-perturbative effects stem-
ming from standard power corrections [11]. The standard
power corrections arise from non-vanishing vacuum expec-
tation values of local operators within the operator prod-
uct expansion and are relatively small. They can be simply
accounted for if necessary. They do not mix with the m2

s
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corrections. The coefficient functions of the local operators
are known in low orders of the perturbative expansion and
there is no necessity for a thorough analysis of their con-
vergence properties at present.

2 Natural strange quark masses
for internal perturbation theory description
of m2

s corrections

We restrict our attention only to the new features that
appear due to the mass corrections when compared to
our previous analysis [1]. The appropriate quantities to
consider are moments of the spectral density

Mn = (n + 1)
∫ 1

0
ρ(x)xndx. (13)

We often use Mτ as a unit of mass which leads to the
dimensionless variable x = s/M2

τ . Note that within finite
order perturbation theory the moments (13) coincide with
the results of a contour integration [12–15] because of the
analytic properties of the functions lnp z. The moments of
the hadronic spectral densities are internal characteristics
of the hadronic decays of the τ system and it is instruc-
tive to describe these moments in internal variables. In the
massless limit within FOPT there is only one independent
internal variable – the effective coupling a(s) which is de-
fined directly on the physical cut through the relation

ρ(s) = 1 + a(s), (14)

and studied in [1]. All the constants that may appear due
to a particular choice of the renormalization scheme are
absorbed into the definition of the effective charge; see
e.g. [16–19]. In our present analysis the effective charge is
determined by the massless piece Π(q2) of the correlator
(2) (see (7) and (8)). Equation (14) fixes the definition
of the effective charge which is later used as an expansion
parameter for the mass corrections. With such a definition
one retains consistence in the description of the massless
approximation for strange and non-strange modes.

The running of the coupling a(s) defined in (14) con-
tains logarithms of s with coefficients given by an effective
β function,

β̄(a) = s
da(s)
ds

= −β0a
2 − β1a

3

− β̄2a
4 − β̄3a

5 + O(a6), (15)

and reads

a(s) = a + β0la
2

+ (β1l + β2
0 l2)a3 +

(
β̄2l +

5
2
β1β0l

2 + β3
0 l3

)
a4

+
(

β̄3l + 3β0β̄2l
2 +

3
2
β2

1 l2

+
13
3

β2
0β1l

3 + β4
0 l4

)
a5 + · · · , (16)

where a = a(M2
τ ), l = ln(M2

τ /s). Note that the expansion
of a(s) in (16) has the same form as the one for αs(s)/π but
now β̄2 and β̄3 are coefficients of the effective β function
[1], while β0 and β1 are renormalization group invariants.
The effective coupling a can be expressed through the MS
coupling constant

a =
αs

π
+ 1.64

(αs

π

)2
− 10.28

(αs

π

)3

+ (−155.0 + k3)
(αs

π

)4
+ · · · , (17)

with αs ≡ αs(M2
τ ). The massless spectral density reads [1]

ρ(s) = 1 + a + 2.25a2l

+ a3(4l + 5.063l2) + a4(−25.7l + 22.5l2 + 11.4l3)
+ a5((−409.5 + 4.5k3)l − 149.4l2

+ 87.75l3 + 25.63l4) + O(a6). (18)

At any fixed order of perturbation theory the effects of
the running die out for the high order moments (large n
in (13)), improving the convergence of the perturbation
theory series. With the definition of the charge according
to (14) all high order corrections vanish as n → ∞ for
any fixed order of perturbation theory. However, for the
mass corrections this is not true anymore since the strange
quark mass introduces a new parameter. In order to ob-
tain only logarithms of the energy in the spectral density
one can redefine the MS scheme quark mass appropriately
and absorb all remaining constants into the internal mass
parameter. Because there are two invariant functions that
characterize the correlator (2) the definitions of the mass
parameters may be different for them. This redefinition
is nothing but the change of the subtraction scheme for
the given spectral density. Note that the introduction of a
natural internal coupling parameter such as the effective
charge a(s) allows one to extend the perturbation theory
series needed for the description of relations between ob-
servables by one more term as compared to the analysis
in e.g. the MS scheme (see e.g. [20–23]). The same reason
of obtaining one more term in the perturbation series is
on the background of the definition of internal parameters
for the quark mass.

2.1 The g part of the correlator: function Πmg(q2)

First we consider the g part of the correlator which con-
tains spin 1 contributions only. We use the massless case
[1] as a base for our analysis here. We define a new mass
parameter mg for the strange quark to absorb all con-
stants in the mass correction of the spectral density into
the new mass definition. By definition

m2
s(s)ρ

MS
g (s;αs) ≡ m2

g(s; a) = m2
g(M

2
τ )ρg(s). (19)

The new mass parameter mg = mg(M2
τ ) is related to the

MS scheme mass parameter ms = ms(M2
τ ) through

m2
g = m2

s

(
1 + 1.67a − 5.87a2 − 51.0a3
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+ (−1342.5 − 1.67k3 + kg3)a4 + O(a5)
)

(20)

= m2
s

(
1 + 1.67

(αs

π

)
− 3.14

(αs

π

)2
− 87.4

(αs

π

)3

+ (−1750 + kg3)
(αs

π

)4
+ O

((αs

π

)5
))

.

The spectral density ρg(s) for the g part of the mass cor-
rection contains only logarithms in fixed order PT expan-
sion and reads

ρg(s) = 1 + 2al + a2(8.05l + 4.25l2)

+ a3(5.3l + 38.23l2 + 9.21l3)
+ a4((−45.3 − 2.0k3)l + 67.4l2

+ 134.2l3 + 20.14l4) + O(a5). (21)

With the help of (21) the numerical value of m2
g can be

determined in terms of the MS scheme mass squared m2
s

with an accuracy of about 7% if (21) is evaluated up to
third order. If the series is (perturbatively) inverted, the
MS scheme strange quark mass can be extracted with an
accuracy of about 4% from the relation

m2
s = m2

g(1 − 0.185 + 0.107 + 0.037

+ (0.19 + 0.00025k3 − 0.00015kg3)). (22)

This accuracy is sufficient at present for phenomenological
applications.

Given the expression for the spectral density (21) the
whole analysis of [1] applies. The moments of the spectral
density ρg(s) in general behave worse than in the mass-
less case. This is understandable if one compares the co-
efficients of the logarithms in the spectral densities (18)
and (21). The coefficients are larger overall in the mass
correction case. The basic objects one needs for the con-
struction of observables are the moments of the spectral
density ρg(s)

Mg(n) = (n + 1)
∫ 1

0
ρg(s)snds. (23)

We find

Mg(0) = 1 + 2a + 16.6a2 + 137.0a3

+ (1378.5 − 2.0k3)a4,

Mg(1) = 1 + a + 6.15a2 + 28.67a3

+ (141.97 − 1.0k3)a4,

Mg(2) = 1 +
2
3
a + 3.63a2 + 12.31a3

+ (35.69 − 0.67k3)a4,

Mg(3) = 1 +
1
2
a + 2.54a2 + 6.97a3

+ (11.58 − 0.5k3)a4,

Mg(4) = 1 +
2
5
a + 1.95a2 + 4.56a3

+ (3.55 − 0.4k3)a4,

...

Mg(100) = 1 +
2

101
a + 0.081a2 + 0.060a3

+ (−0.434 − 0.0198k3)a4. (24)

Note that the unknown coefficient kg3, which would ap-
pear in the fourth order coefficient of the moments in the
MS scheme, is absorbed in the definition of the mass mg.
Still the fourth order coefficient is not known because of
its dependence on k3 which enters due to the charge re-
definition. Indeed, this dependence has its origin in the
definition of the mass mg (19). The third coefficient of the
effective γ function γg3 depends on k3. This dependence
affects the fourth order coefficient of ρg(s) through the
running mass (12)

γ0 = 1, γg1 = 4.027,

γg2 = 2.65, γg3 = −22.65 − k3. (25)

For large n the moments behave better because the infra-
red region of integration is suppressed. Note that the coef-
ficients of the series in (24) are saturated with the lowest
power of logarithm for large n for a given order of per-
turbation theory, i.e. they are saturated with the highest
coefficient of the effective β function and γ function.

It is instructive to compare the results in (24) with the
MS scheme expansions given by

MMS
g (0) = 1 + 3.67

αs

π
+ 20.0

(αs

π

)2

+ 110.1
(αs

π

)3
+ (−256.3 + kg3)

(αs

π

)4
,

MMS
g (1) = 1 + 2.67

αs

π
+ 6.32

(αs

π

)2

− 38.98
(αs

π

)3
+ (−1779 + kg3)

(αs

π

)4
,

MMS
g (2) = 1 + 2.33

αs

π
+ 2.70

(αs

π

)2

− 64.26
(αs

π

)3
+ (−1865 + kg3)

(αs

π

)4
,

MMS
g (3) = 1 + 2.17

αs

π
+ 1.06

(αs

π

)2

− 73.18
(αs

π

)3
+ (−1863 + kg3)

(αs

π

)4
,

MMS
g (4) = 1 + 2.07

αs

π
+ 0.14

(αs

π

)2

− 77.46
(αs

π

)3
+ (−1851 + kg3)

(αs

π

)4
,

...

MMS
g (100) = 1 + 1.69

αs

π
+ 2.99

(αs

π

)2

− 87.15
(αs

π

)3
+ (−1755 + kg3)

(αs

π

)4
.

The advantage of the effective scheme against the MS
scheme is apparent starting with α3

s coefficient. For mo-
ments larger than one (n > 1) in the MS scheme the series
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shows already asymptotic growth in the third order while
in the effective scheme the third coefficient is still smaller
than the previous one. From its construction it is clear
that the convergence behavior improves with higher mo-
ments in the effective scheme while in MS scheme high
moments become even worse than the lower ones from
the point of view of the structure of the perturbation the-
ory series. The anomalously small third order coefficient
of the first moment in the MS scheme is the result of an
accidental cancellation of the contributions of logarithmic
and constant terms because of the particular choice of the
scheme. The general discussion of [1] now applies. For our
numerical estimates we take a = 0.111 as obtained from
the corresponding value of the MS scheme charge. In the
effective scheme the PT series for the moments read

Mg(0) = 1 + 0.222 + 0.204
+ 0.187 + (0.21 − 0.0003k3),

Mg(1) = 1 + 0.111 + 0.076
+ 0.039 + (0.022 − 0.00015k3),

Mg(2) = 1 + 0.074 + 0.045
+ 0.017 + (0.0054 − 0.00010k3),

Mg(3) = 1 + 0.056 + 0.031
+ 0.010 + (0.0018 − 0.000076k3),

Mg(4) = 1 + 0.044 + 0.024
+ 0.006 + (0.00054 − 0.000061k3). (26)

With the choice k3 = 100 [1] the fourth order correction is
smaller than the third term for the moments with n < 5.
A formal accuracy of about 0.7% can be obtained if the
zero order moment is excluded using as an estimate the
contribution of the smallest term. With the standard Padé
estimate for k3 = 25 the moments become

Mg(0) = 1 + 0.222 + 0.204 + 0.187 + 0.20,

Mg(1) = 1 + 0.111 + 0.076 + 0.039 + 0.018,

Mg(2) = 1 + 0.074 + 0.045 + 0.017 + 0.003,

Mg(3) = 1 + 0.056 + 0.031 + 0.010 − 0.0001,

Mg(4) = 1 + 0.044 + 0.024 + 0.006 − 0.001. (27)

If one excludes Mg(0) an accuracy of better than 2% can
be obtained.

There is no value for k3 which makes the fourth or-
der corrections of all moments smaller than the previous
correction. If k3 has a value between −46.5 and 1.2 all mo-
ments starting from the first moment show no asymptotic
growth in fourth order. Such a fine tuning of the unknown
coefficient k3 seems to be unrealistic. We thus conclude
that asymptotic growth is unavoidable in fourth order in
the g part. The ultimate accuracy depends on the value of
k3 varying between 0.7% and 2% if the zero order moment
is excluded. The invariant statement about the asymptotic
growth is that the system of moments Mg(n) with n = 0
included cannot be treated perturbatively at the fourth
order of perturbation theory for the given numerical value
of the expansion parameter a = 0.111 if one wants to
obtain an accuracy of the coefficient function in front of

m2
s correction in Πg(q2) amplitude better than 15%–20%.

This statement about the ultimate accuracy of the set of
moment observables attainable in fourth order of pertur-
bation theory is independent of whichever numerical value
k3 takes.

The perturbation theory expansions for the system of
moments with (1 − s)n weight

M̃g(n, 0) = (n + 1)
∫ 1

0
ρg(s)(1 − s)nds

= (n + 1)!
n∑

k=0

(−1)k

(k + 1)!(n − k)!
Mg(k) (28)

show a much worse PT behavior. One has

M̃g(1, 0) = 1 + 0.333 + 0.332
+ 0.336 + (0.397 − 0.00046k3),

M̃g(2, 0) = 1 + 0.407 + 0.429
+ 0.461 + (0.569 − 0.00056k3),

M̃g(3, 0) = 1 + 0.463 + 0.509
+ 0.572 + (0.728 − 0.00063k3). (29)

The convergence of the series is obviously quite poor. All
moments M̃g(n, 0) contain the contribution of M̃g(0, 0) ≡
Mg(0) in the sum (28) which by itself shows a bad behav-
ior; the rest makes it worse.

To summarize, the general PT structure of the mo-
ments for the g part in the effective scheme with the new
mass parameter m2

g is very similar to the massless part
and there are no qualitatively new features found here as
compared to the analysis of the massless part in [1].

2.2 The q part of the correlator: the function Πmq(q2)

The q amplitude Πq(q2) contains contributions of both
spin 1 and spin 0 final states. The correction to the q part
is different from the g part as concerns its analytic prop-
erties in the q2-plane – it contains a 1/q2 singularity at
the origin – which necessitates a separate treatment. The
explicit power singularity 1/q2 at the origin of the func-
tion Πmq(q2)/q2 makes the formulation of the moments
for the spectral density of the q part directly on the phys-
ical cut a bit tricky. Indeed, because of the 1/q2 factor the
amplitude for the m2

s correction has no standard disper-
sion representation. Rather the dispersion representation
should be written as

Πmq(Q2)
Q2 =

∫
dσ(s)
s + Q2 , (30)

with a measure dσ(s) which is not differentiable, i.e. dσ(s)
6= σ′(s)ds with some continuous σ′(s). However, it can be
written in a more familiar form if a different weight is
used:

Πmq(Q2)
Q2 =

∫ ∞

0

ρF (s)ds

(s + Q2)2
= − d

dQ2 F (Q2), (31)
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with

F (Q2) =
∫ ∞

0

ρF (s)ds

s + Q2 , (32)

and ρF (s) a continuous spectral density. Therefore F (Q2)
is the primary function of

−Πmq(Q2)/Q2 = Πmq(q2)/q2.

It reads

F (Q2) = −
∫

dQ2

Q2 Πmq(Q2). (33)

For the discontinuity across the cut defined by

ρF (s) =
1

2πi
(F (−s − i0) − F (−s + i0)) , (34)

one obtains

ρF (s) = 1 +
(

7
3

+ 2l

)
a + (1.77 + 14.22l + 4.25l2)a2

+ (−207.04 + kq2 + 62.21l + 54.52l2 + 9.21l3)a3

+ · · · , (35)

where we have already substituted the effective coupling a
for αs. Equation (35) has the standard form of the spectral
density needed for the comparison with the massless and
the g cases. In order to get rid of the constants the new
mass parameter mq for the amplitude Πmq(Q2) is defined
in analogy with the g case such that

m2
q = m2

sρF (M2
τ ), (36)

with m2
q = m2

q(M
2
τ ) and m2

s = m2
s(M

2
τ ). Then one explic-

itly has

m2
q = m2

s

(
1 +

7
3
a + 1.77a2 + (−207.044 + kq2)a3

+ (−1335.5 − 2.33k3 − 4.92kq2 + kq3)a4 + · · ·) . (37)

Note that the order a4 term contains not only the un-
known coefficient kq2 but also the higher order coefficient
kq3 which makes the contribution of the a4 term com-
pletely arbitrary. The definition of this new mass m2

q in
terms of the MS scheme mass (37) has an accuracy of
about 2% if only second order corrections are used. The
PT series is only known to third order – already the fourth
term contains the unknown coefficient kq2. Expressed
through the MS scheme coupling constant αs (37) reads

m2
q = m2

s

(
1 +

7
3

(αs

π

)
+ 5.60

(αs

π

)2

+ (−225.22 + kq2)
(αs

π

)3
+ · · ·

)
. (38)

With this new mass m2
q a new spectral density ρq(s) can

be defined in analogy to (19):

m2
sρF (s) = m2

qρq(s), (39)

that leads to the expansion

ρq(s) = 1 + 2la + (9.55l + 4.25l2)a2

+ (36.36l + 44.6l2 + 9.21l3)a3

+ ((−1141 − 2k3 + 6.75kq2)l + 253.6l2

+ 154.96l3 + 20.14l4)a4 + O(a5). (40)

Note that the series (40) contains only logarithms and no
constants. The coefficients of the spectral density ρq(s)
from (40) are close to those of the g part mass correction
ρg(s) (21) up to the second order. The coefficients of the
highest powers of logarithms are simply equal while the
lower powers are different because of different coefficients
in the corresponding D functions (9). The coefficient of
the third order term of (40) for ρq(s) is seven times larger
than the corresponding coefficient from (21) for ρg(s) for
the lowest power of logarithm which dominates the behav-
ior of the higher moments. The coefficients of the spectral
density ρq(s) are in general larger than the coefficients of
the spectral density ρ(s) in the massless case (18). Thus,
the behavior of the spectral densities (ρ, ρg, ρq) allows one
to immediately conclude about the convergence of the cor-
responding moments for all three independent contribu-
tions up to order m2

s in the strange decays.
The standard moments of ρq(s) as in (13), (23) do

not however coincide with the physical moments of the q
amplitude. Indeed, the physical q moments Mph

q (n) are
defined through the contour integration in the following
way:

im2
s

2π

∮
Πmq(q2)

q2

(
q2

M2
τ

)n

dq2 = m2
qM

ph
q (n), (41)

where the effective mass m2
q is used for normalization. The

moments (41) can be evaluated through the function ρq(s)
directly. The zero order moment turns out to be

Mph
q (0) = −ρq(M2

τ ) = −1. (42)

The reason for this is that the integration with n = 0
in (41) picks up exactly those contributions that eventu-
ally are absorbed into the strange quark mass redefinition.
Higher order physical moments are related to the standard
moments of ρq(s) via

Mph
q (n)|n>0 = n

∫ 1

0
ρq(s)sn−1ds − 1

≡ Mq(n − 1) − 1. (43)

They contain no parton model contribution. The moments
Mq(n) are the standard objects defined in (13) and the
whole analysis of [1] is applicable with ρq(s) to be com-
pared with ρg(s) and ρ(s). Numerical values for the mo-
ments are

Mq(0) = 1 + 2a + 18.1a2 + 180.8a3

+ (779.4 − 2k3 + 6.75kq2)a4,

Mq(1) = 1 + 1a + 6.90a2 + 47.39a3
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+ (−297.3 − k3 + 3.375kq2)a4,

Mq(2) = 1 +
2
3
a + 4.13a2 + 24.08a3

+ (−283.6 − 0.67k3 + 2.25kq2)a4,

Mq(3) = 1 +
1
2
a + 2.92a2 + 15.53a3

+ (−237.13 − 0.5k3 + 1.69kq2)a4,

Mq(4) = 1 +
2
5
a + 2.25a2 + 11.28a3

+ (−199.699 − 0.4k3 + 1.35kq2)a4,

...

Mq(100) = 1 +
1
50

a + 0.095a2 + 0.37a3

+ (−11.25 − 0.020k3 + 0.067kq2)a4. (44)

The use of ρq(s) is a universal way of describing the mo-
ments in FOPT and easy for comparison with the massless
and the g parts. The physical q moments Mph

q (n) are re-
lated to it by (42) and (43). They do not, however, change
the pattern of PT convergence. The moment Mph

q (1) re-
lated to Mq(0) shows asymptotic growth in the third order
already. As expected, higher moments show a better be-
havior because the low energy region of the integration is
suppressed.

3 Order m2
s corrections

to τ lepton decay observables

After introducing the technique for analyzing the mo-
ments at order m2

s we now apply this to an analysis of
physical observables.

3.1 Total decay rate

The τ decay width is given by a specific linear combina-
tion of moments. The weight function contains the overall
factor (1 − s)2 which impairs the convergence of the to-
tal decay rate observable. The (1 − s)2 factor enhances
the infra-red region of integration, i.e. the relative magni-
tude of the contributions of logarithms ln(M2

τ /s) at small
energy. The concrete shape of the weight function with
the weight factor (1 − s)2 is the main source of the slow
convergence of the m2

s correction to the rate

Rmτ =
i

2π

∮
2

(
1 − q2

M2
τ

)2

× 3
(

m2
sΠmq(q2)

q2 − m2
s

M2
τ

Πmg(q2)
)

dq2

M2
τ

. (45)

We retain the different mass definitions for the two invari-
ant functions in order to explore the structure of the PT
series and to check on its convergence.

The result for the mass correction of the total decay
rate reads

Rmτ = 6
m2

q

M2
τ

(Mph
q (0) − 2Mph

q (1) + Mph
q (2))

− 6
m2

g

M2
τ

(
Mg(0) − Mg(1) +

1
3
Mg(2)

)

= −6
m2

q

M2
τ

(2Mq(0) − Mq(1))

− 6
m2

g

M2
τ

(
Mg(0) − Mg(1) +

1
3
Mg(2)

)
. (46)

It is expressed through the effective mass parameters m2
g,q

and the moments introduced earlier. In the parton model
approximation all the moments are normalized to unity
which makes a glance analysis of (46) easy. The conver-
gence pattern of all the moments has been obtained al-
ready before. Numerically one has

Rmτ = −6
m2

q

M2
τ

(
1 + 3a + 29.21a2 + 314.3a3

+ (1856.1 − 3.0k3 + 10.13kq2)a4)

− 2
m2

g

M2
τ

(
1 + 3.67a + 34.84a2 + 337.3a3

+ (3745.2 − 3.67k3)a4) . (47)

The reason for the bad convergence of (47) is the contribu-
tion of the low moments Mq(0), Mq(1) and Mg(0), Mg(1)
to the mass correction of the total decay rate. Both series
in (47) converge only marginally calling for the resumma-
tion of the series. The total contribution is dominated by
the q part which has a three times bigger coefficient in the
leading term.

Inserting the expressions for m2
q, m2

g, a in terms of the
MS scheme parameters m2

s and αs into (47) one obtains
the standard result

Rmτ = −8
m2

s

M2
τ

(
1 + 5.33

αs

π
+ 46.0

(αs

π

)2

+ (283.55 + 0.75kq2)
(αs

π

)3
+ · · ·

)
. (48)

3.2 The “1+0” method

In [2] the numerical value for the strange quark mass in
MS scheme has been extracted with the “1+0” method
which uses the representation of the total decay rate as a
sum of (L + T ) and L contributions (compare with (6))

Rτ =
i

2π

∮
2

(
1 − q2

M2
τ

)2

×
{(

1 + 2
q2

M2
τ

)
Π(L+T )(q2)

− 2
q2

M2
τ

ΠL(q2)
}

dq2

M2
τ

, (49)
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Π(L+T )(q2) = Πq(q2). (50)

It is assumed that in the MS scheme the series for the
(L + T ) part of the m2

s correction in (49) converges well
[2]. The convergence is not impressive in FOPT but the
numbers given for contour improved FOPT in [2] show
fast convergence. The quantity of interest is now

RL+T
mτ =

i
2π

∮
2

(
1 − q2

M2
τ

)2 (
1 + 2

q2

M2
τ

)

× 3
Πmq(q2)

q2

dq2

M2
τ

= 6
m2

q

M2
τ

(Mph
q (0) − 3Mph

q (2) + 2Mph
q (3))

= −6
m2

q

M2
τ

(3Mq(1) − 2Mq(2)). (51)

If we look at the moments which are contained in RL+T
mτ

(51) it is natural to expect a convergence behavior better
than in the total decay rate because no zero order mo-
ments are needed to construct RL+T

mτ . This is an invariant
(scheme independent) reason for better convergence: the
particular combination RL+T

mτ receives a smaller IR con-
tribution from integration along the cut and therefore is
better computable in PT. Still the convergence is rather
slow. Numerical results for the (L + T ) part are

RL+T
mτ |qscheme =

− 6
m2

q

M2
τ

(
1 + 1.67a + 12.448a2 + 94.01a3

+ (−324.629 − 1.67k3 + 5.625kq2)a4 + · · ·) . (52)

The convergence persists and the last term is still smaller
than the third for the standard values of 25 < k3 < 100
and 0 < kq2 < 160. The total contribution of first three
terms is 0.45 which is a reasonable change of the leading
order term due to PT correction. In the MS scheme this
becomes

RL+T
mτ |MS scheme = −6

m2
s

M2
τ

(
1 + 4.0

(αs

π

)
+ 24.67

(αs

π

)2

+ (−62.77 + kq2)
(αs

π

)3
(53)

+ (−3110 + 7.29kq2 + kq3)
(αs

π

)4
+ · · ·

)
.

The total contribution of the first two terms amounts to
0.65. The change in the leading order prediction is even
larger than the total change in the effective q scheme where
one more term of the PT expansion is available. The only
advantage of the “1+0” amplitude from a PT point of
view is the absence of the zero order moment Mq(0), which
is the most divergent one. Still, the moment Mq(1) from
(44) which contributes to the rate expression (51) is bad
enough to prevent a fast convergence. The longitudinal

part can be expressed in terms of the moments and con-
vergence is rather bad:

RL
mτ =

i
2π

∮
2

(
1 − q2

M2
τ

)2

(−2)
q2

M2
τ

ΠL(q2)
dq2

M2
τ

= −12
m2

q

M2
τ

(Mq(0) − 2Mq(1) + Mq(2))

− 6
m2

g

M2
τ

(
Mg(0) − Mg(1) +

1
3
Mg(2)

)
, (54)

because again the lowest order moments enter. The lead-
ing order parton model term in the q part vanishes. Nu-
merical values are

RL
mτ = − 2

m2
g

M2
τ

(
1 + 3.67a + 34.8a2 + 337.3a3

+ (3745.2 − 3.67k3)a4)

− 8
m2

q

M2
τ

(
0 + a + 12.57a2 + 165.2a3

+ (1635.6 − k3 + 3.375kq2)a4) , (55)

from which one can perceive the reason for the bad PT
structure. While the convergence of the g part is rather
standard, the admixture of the q contribution without the
leading term is enhanced by a relative factor of four which
makes the sum in (55) completely uninterpretable.

Note that we use the mg,q mass parameters for the g, q
parts of the correlator as internal mass scales for the m2

s

corrections. One can introduce another set of parameters
mT,L related to the definite spin decomposition of the cor-
relator (4). As one can see from (5) mT = mg because the
ΠT (q2) amplitude is proportional to Πg(q2). The effective
mass m2

L is obtained from the longitudinal part ΠL(q2).
The expression of m2

T through the MS scheme mass is
reasonable (21) while the corresponding relation for mL is
much wilder. We have

m2
L = m2

s

(
1 + 5.67

αs

π
+ 31.9

(αs

π

)2
+ 89.2

(αs

π

)3

+ (−5180 + kg3 + 17.5kq2)
(αs

π

)4
+ · · ·

)
. (56)

The different structures of the PT series for the param-
eters m2

T and m2
L can be interpreted as a result of the

difference of a full QCD interaction in the spin 1 and spin
0 channels. The stronger and earlier breakdown of the PT
behavior in the spin 0 channels can be related to the con-
tribution of non-perturbative effects (instantons) which is
absent in the spin 1 channel.

To summarize, the convergence of the PT series for
the m2

s corrections for the most natural and precisely
measured physical observables is always slow and almost
marginal. This is because the IR region of integration is
numerically important for the given value of the coupling
constant and the order of PT. Any apparent fast conver-
gence is the result of either a specific linear combination of
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moments or a particular scheme choice. The former case
is, however, not realized for physical observables of inter-
est measurable in experiment. This would imply that a
resummation of the series is necessary for a sound inter-
pretation of the theoretical formulas for decay rates.

4 Conclusions

We have analyzed the asymptotic structure of the PT se-
ries for the m2

s corrections. Using the standard estimate of
the accuracy of an asymptotic series we have found that
the theoretical precision in the perturbative description of
Cabibbo supressed τ lepton decays is already limited by
the asymptotic growth of the coefficients in fourth order
of perturbation theory. This is a scheme invariant state-
ment. The accuracy of the perturbative expansion for the
coefficient functions of the m2

s corrections in Cabibbo sup-
pressed channels are 15%–20% at best. Therefore the ex-
traction of the numerical value for the strange quark mass
from the m2

s corrections to the τ decay rate into strange
hadrons is limited by the precision of the coefficient func-
tions. A better theoretical accuracy can be obtained by
using observables which contain higher order moments but
the experimental accuracy of them is not good enough at
present. From a phenomenological point of view the anal-
ysis of the m2

s corrections differ from the massless case.
While in the latter the low order moments can be excluded
by substituting experimental results for them (from e+e−
annihilation, for instance), the coefficient functions of m2

s

corrections have no immediate physical meaning and can-
not be traded for in this manner.

The introduction of two natural mass parameters al-
lows one to describe massless, q and g parts of the correla-
tor up to order a4 with only two unknown parameters k3
and kq2 instead of four in the MS scheme. The existence of
two different mass scales is physically motivated by the dif-
ference of the interaction in the spin 1 and spin 0 channels.
Still for both independent m2

s corrections (g and q part)
the convergence of low order moments is slow. The contri-
bution of the IR region is large and these quantities have a
limited precision when evaluated within PT. It cannot be
improved by a particular change of the scheme or taking
particular linear combinations. Only those moments con-
verge well where the IR contribution is suppressed. The
renormalization group improved QCD parameters a(s),
ms(s) run too fast to give a precise PT series for a set
of τ observables containing low moments with a large IR
contribution. If the running would be slower – coefficients
of the β and γ functions would be smaller – then one
could meet the high standards of experimental precision
for low moments with FOPT theoretical formulas. Ob-
servables with higher moments are described well within
FOPT but the experimental accuracy is not yet sufficient
for precise comparison.

Therefore for a precise comparison of theory with ex-
periment some procedure of resummation is required [15,
21,24]. And, in fact, one can perform resummation only for
lowest order moments to keep things close to the standard
FOPT. Resummation, however, introduces additional (to

the standard renormalization group freedom [25]) arbi-
trariness; in particular, it interferes with non-perturbative
power corrections that makes a separation of contributions
within the OPE not unique.

This problem is beyond the scope of the present anal-
ysis.
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Appendix

The input for all calculations are the coefficients of the
correlator, the beta and the gamma function which are
available up to four loop calculations at present. In the
case of Πq(Q2) only corrections up to α2

s are known be-
cause the constant term of the correlator is not yet calcu-
lable. All coefficients are given in the MS scheme (see, e.g.
[26]). Below ζ(z) is the Riemann ζ function.

The numerical values of the coefficients of the correla-
tor in the massless limit are given by the expressions [27,
28]

k1 =
299
24

− 9ζ(3),

k2 =
58057
288

− 779
4

ζ(3) +
75
2

ζ(5), (57)

while the coefficients of mass corrections are [29,30]

kq1 =
13981
432

+
323
54

ζ(3) − 520
27

ζ(5),

kg1 =
4591
144

− 35
2

ζ(3),

kg2 =
1967833

5184
− π4

36
− 11795

24
ζ(3) +

33475
108

ζ(5).

For the beta function coefficients we have [31]

β0 =
9
4
, β1 = 4, β2 =

3863
384

,

β3 =
140599
4608

+
445
32

ζ(3);

for the gamma function coefficients [32,33]

γ0 = 1, γ1 =
91
24

, γ2 =
8885
578

− 5
2
ζ(3),

γ3 =
2977517
41472

+
3π4

32
− 9295

432
ζ(3) − 125

12
ζ(5).
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